Closed-Loop Feedback Control in Intelligent Wells: Application to a Heterogeneous, Thin Oil-Rim Reservoir in the North Sea

Author:

Dilib F.A.. A.1,Jackson M.D.. D.1,Zadeh A. Mojaddam2,Aasheim R..2,Årland K..2,Gyllensten A.J.. J.2,Erlandsen S.M.. M.2

Affiliation:

1. Imperial College London

2. Statoil

Abstract

Summary Important challenges remain in the development of optimized control strategies for intelligent wells, particularly with respect to incorporating the impact of reservoir uncertainty. Most optimization methods are model-based and are effective only if the model or ensemble of models used in the optimization captures all possible reservoir behaviors at the individual-well and -completion level. This is rarely the case. Moreover, reservoir models are rarely predictive at the spatial and temporal scales required to identify control actions. We evaluate the benefit of the use of closed-loop control strategies, on the basis of direct feedback between reservoir monitoring and inflow-valve settings, within a geologically heterogeneous, thin oil-rim reservoir. This approach does not omit model predictions completely; rather, model predictions are used to optimize a number of adjustable parameters within a general direct feedback relationship between measured data and inflow-control settings. A high-resolution sector model is used to capture reservoir heterogeneity, which incorporates a locally refined horizontal grid in the oil zone, to accurately represent the horizontal-well geometry and fluid contacts, and capture water and gas flow. Two inflow-control strategies are tested. The first is an open-loop approach, using fixed inflow-control devices to balance the pressure drawdown along the well, sized before installation. The second is a closed-loop, feedback-control strategy, using variable inflow-control valves that can be controlled from the surface in response to multiphase-flow data obtained downhole. The closed-loop strategy is optimized with a base-case model, and then tested against unexpected reservoir behavior by adjusting a number of uncertain parameters in the model but not reoptimizing. We find that closed-loop feedback control yields positive gains in net-present value (NPV) for the majority of reservoir behaviors investigated, and higher gains than the open-loop strategy. Closed-loop control also can yield positive gains in NPV even when the reservoir does not behave as expected, and in tested scenarios returned a near optimal NPV. However, inflow control can be risky, because unpredicted reservoir behavior also leads to negative returns. Moreover, assessing the benefits of inflow control over an arbitrarily fixed well life can be misleading, because observed gains depend on when the calculation is made.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3