Challenges in Simulation of Salt Clogging

Author:

Khosravi Maryam1,Xu Yao1,Mirazimi Seyedamir1,Stenby Erling Halfdan1,Yan Wei1

Affiliation:

1. Technical University of Denmark

Abstract

Abstract Carbon sequestration in depleted reservoirs or aquifers is highly demanded but still faced with technical challenges in many aspects. Among them, losing well injectivity during the storage process is a major concern. This can be caused by salt deposited in the reservoir, particularly near the injection well, which may sometimes creep into the injection well. Therefore, it is desirable to estimate the amount and distribution of salt precipitation at the injection conditions for a smooth implementation of CO2 sequestration. In this paper, we investigate how much commercial software CMG-GEM can help the evaluation of salt precipitation. We first review the critical mechanisms involved in salt precipitation and then analyze the challenges in simulating these mechanisms. According to the literature, water saturation and saturation index are the two most influential parameters that control the amount and pattern of salt precipitation and clogging due to water vaporization. Their values are determined by the complex interplay between viscous force, gravity, the evaporation of water into the CO2 stream, the molecular diffusion of dissolved salt in the brine, and surface phenomena such as the spreading of a thin water film on the rock surface, the Marangoni convection, and disjoining suction. Here we investigate the challenges of simulating the aforementioned mechanisms as well as salt precipitation due to the backflow of brine toward the injection well. The surface-related phenomena are difficult to account for in simulation. However, the extent of the CO2 plume can be significantly underestimated if they are neglected. Although water vaporization, salt diffusion, and capillary pressure can be formally included in the simulation, it is arguable whether they always describe the actual phenomena adequately. In most cases of CO2 injection into an aquifer, water spreads all over the rock surface, which increases the rate of vaporization and surface-related phenomena, such as the Marangoni effect, dramatically. Marangoni turbulent fluxes originating from the unbalanced shear stresses on the interface can accelerate the mixing effect in homogenizing the ions composition, which results in self-enhanced salt precipitation via the thin brine film spreading on the rock surface. We examine different simulation techniques as remedies to mimic those phenomena.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3