Discrete-Element-Method/Computational-Fluid-Dynamics Coupling Simulation of Proppant Embedment and Fracture Conductivity After Hydraulic Fracturing

Author:

Zhang Fengshou1,Zhu Haiyan2,Zhou Hanguo3,Guo Jianchun2,Huang Bo4

Affiliation:

1. Tongji University

2. Southwest Petroleum University

3. Southwest Petroleum University and Shengli Oilfield Company, SINOPEC

4. Shengli Oilfield Company, SINOPEC

Abstract

Summary In this paper, an integrated discrete-element-method (DEM)/computational-fluid-dynamics (CFD) numerical-modeling work flow is developed to model proppant embedment and fracture conductivity after hydraulic fracturing. Proppant with diameter from 0.15 to 0.83 mm was modeled as a frictional particle assembly, whereas shale formation was modeled as a bonded particle assembly by using the bonded-particle model in PFC3D (Itasca Consulting Group 2010). The mechanical interaction between proppant pack and shale formation during the process of fracture closing was first modeled with DEM. Then, fracture conductivity after the fracture closing was evaluated by modeling fluid flow through the proppant pack by use of DEM coupled with CFD. The numerical model was verified by laboratory fracture-conductivity experiment results and the Kozeny-Carman equation. The simulation results show that the fracture conductivity increases with the increase of proppant concentration or proppant size, and decreases with the increase of fracture-closing stress or degree of shale hydration; shale-hydration effect was confirmed to be the main reason for the large amount of proppant embedment.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3