Evaluating Evaporative Processes - Gas Lift Chemical Applications, Halites and Gunking

Author:

Goodwin Neil1,Graham Gordon1

Affiliation:

1. Scaled Solutions Ltd

Abstract

Abstract This paper describes a number of different evaporative processes which can cause flow assurance issues within oilfield production systems including chemical application via gas lift systems, halite deposition and gunking in injection lines. Similarities and differences are described and laboratory test methods are presented for each case. While the challenges all involve evaporative processes, each system is different and requires suitable approaches to evaluate and mitigate the risks. These attempt to mimic the field system in the laboratory and allow observation under controlled conditions. Laboratory test methods vary from basic static bottle tests, through glass capillaries in autoclaves to dynamic tests using brine and a partially saturated gas phase, or neat chemical and dry gas lift media. In particular, the challenges when applying a chemical via a gas lift system will be described including field case studies. Static tests with unlimited volume to evaporate produce a worst case for any evaporative process. However, it is frequently too severe to produce any useful results. Instead a test regime should be designed to mimic the field conditions. For example, evaporation within a pressure vessel can mimic the self-limiting process within a downhole injection line. Application of a chemical via a gas lift system requires a dynamic test where hot pressurised dry gas and neat chemical are co-injected with continual monitoring of gunking as indicated by flow path restrictions. Halites require a similar dynamic test method but with extensive modelling of the in situ saturation ratio to fully understand the system. This paper will present case studies, summarise our understanding of the different evaporative processes, and give best practice guidelines for laboratory evaluation of the risks and mitigation strategies.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3