A New Friction-Reducing Agent for Slickwater-Fracturing Treatments

Author:

Ibrahim Ahmed F.1,Nasr-El-Din Hisham A.1,Rabie Ahmed2,Lin Genyao2,Zhou Jian2,Qu Qi2

Affiliation:

1. Texas A&M University

2. Solvay

Abstract

Summary Friction reducers (FRs) represent an essential component in any slickwater-fracturing fluid. Although the majority of previous research on these fluids has focused on evaluating the friction-reduction performance of chemical components, only a few studies have addressed the potential damage these chemicals can cause to the formation. Because of the polymeric nature of these chemicals—typically polyacrylamide (PAM)—an FR can either filter out onto the surface of the formation or penetrate deeply to plug the pores. In addition, breaking these polymers at temperatures lower than 200°F remains a problem. The present study introduces a new FR that replaces the linear gel with an enhanced proppant-carrying capacity and reduced potential for formation damage. Friction-reduction performance, proppant settling, breakability, and coreflood experiments using tight sandstone cores at 150°F were conducted to investigate a new FR (FR1). The performance of the new FR was compared with two different FRs: a salt-tolerant polymer that is a copolymer of acrylamide and acrylamido-methylpropane sulfonate (FR2), and a guar-based polymer (FR3). Different breakers were used to examine the breakability of the three FRs, including ammonium persulfate (APS), sodium persulfate (SPS), hydrogen peroxide (HP), and sodium bromate (SB). The friction reduction of the new chemical was higher than 70% in fresh water or 2 wt% potassium chloride (KCl) in the presence of calcium chloride (CaCl2) or choline chloride. The presence of 1 lbm/1,000 gal of different types of breakers did not affect the friction-reduction performance. The friction reduction of 1 gal/1,000 gal of the new FR1 was also higher than that of the guar-based FR3 at a load of 4 gal/1,000 gal at the same conditions. The results show that the new FR is breakable with any of the tested breakers. Among the four tested breakers, APS is the most-efficient breaker. Static and dynamic proppant-settling tests further indicated a superior performance of FR1 for proppant suspension compared with a PAM FR (FR2). Coreflood experiments showed that FR1 did not cause any residual damage to the core permeability when APS was used as a breaker, compared with 10% and 9% damage when FR2 and FR3 were tested, respectively. Coreflood tests also showed that FR1 is breakable using SB with only 2.5% damage, whereas FR2 and FR3 resulted in 47% and 41% damage, respectively. The results also show that higher salinity does not affect the breakability of the new FR. The proposed FR shows higher friction-reduction performance and better proppant-carrying capacity with no formation damage, compared with the conventional counterparts. Hence, FR1 is a viable choice for application in fracturing formations with proppants.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3