Optimizing Hydraulic Fracture Spacing in Unconventional Shales

Author:

Morrill Jonathan C.1,Miskimins Jennifer L.1

Affiliation:

1. Marathon Oil Company

Abstract

Abstract "Stress shadowing," where the stress field around an induced hydraulic fracture reorients from its far field directions by up to 90 degrees, is a major factor in designing and executing multiple hydraulically fractured, horizontal well completions. This is especially true as the number of hydraulic fractures increase for a given lateral length. Often the number of fracture stages is determined by well analogues without considering how stress shadows alter fracture properties. In this paper, the main objective is to determine what properties are most important in determining the minimum distance needed between hydraulic fractures to avoid stress interference. A finite element model of a horizontal wellbore with a transverse hydraulic fracture is constructed in order to perform numerical simulations of the stress around the fracture. The model is used to perform sensitivities on various mechanical and reservoir properties to investigate how and why the stress field changed. The simulation results show that the ratio of minimum to maximum horizontal stress is the most important parameter to know in order to determine the optimal fracture spacing. Changes in this ratio show an exponential change in fracture spacing, affecting spacing requirements by up to 81%. Poisson's ratio, Biot's parameter, and net fracture pressure were also important. It can be concluded that fracture spacing cannot be determined by looking only at one or two properties. The fracture spacing must be determined by looking at all the important variables and identifying those that are most variable for the reservoir in question. The sensitivity of the "stress shadow" to various properties is an indication that obtaining good data is key to proper completion design.

Publisher

SPE

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3