Combining Magnetic and Gyroscopic Surveys Provides the Best Possible Accuracy

Author:

ElGizawy Mahmoud1ORCID,Lowdon Ross2ORCID,Aklestad Darren Lee2ORCID

Affiliation:

1. K&MTechnology, SLB (Corresponding author)

2. SLB

Abstract

Summary A survey program is designed for every well drilled to meet the well objective of penetrating the target reservoir and avoiding a collision with nearby offset wells. The selection of the wellbore survey tools within the survey program is limited in number and accuracy by the current surveying technologies available in the industry. This article demonstrates how a higher level of accuracy can be achieved to meet challenging well objectives when the accuracy of the most accurate wellbore surveying tools and technologies taken individually is insufficient. This high level of wellbore positioning accuracy is achieved by combining two independent wellbore positions of the same wellbore trajectory. The first wellbore position is calculated using the latest technology of magnetic measurement-while-drilling (MWD) definitive dynamic surveys (DDS). The accuracy of the MWD DDS can be further improved by minimizing error sources such as misalignment of the survey package from the borehole, drillstring magnetic interference, the use of localized geomagnetic reference, using high-accuracy accelerometer sensors, and a high-accuracy gravity reference. Furthermore, the MWD DDS inclination accuracy is improved using an independent inclination measurement from the rotary steerable system. A first wellbore position is calculated from the magnetic MWD DDS after applying in-field referencing (IFR), multistation analysis (MSA), bottomhole assembly (BHA), sag correction (SAG), and dual-inclination (DI) corrections to improve both azimuth and inclination accuracy. A second wellbore position is calculated using gyro-MWD (GWD) technology. The results and comparisons of multiple combined survey runs are presented. The highest accuracy of wellbore positioning had been proved in this successful case study by penetrating a very small reservoir target on an extended-reach well that was unfeasible using either the most accurate enhanced MWD DDS or GWD technology individually. The presented case study shows how the wellbore objectives of penetrating a very small reservoir target had been confirmed by logging-while-drilling images and the reservoir mapping interpretation of the client subsurface team. This gave a high-accuracy wellbore position during drilling and provided higher confidence in wellbore placement to maximize reservoir production without colliding with nearby offset wells. Wellbore survey accuracy limits a borehole’s lateral and true vertical depth (TVD) spacing, constraining reservoir production in those sections. In the top and intermediate sections, wellbore survey accuracy limits how close the wellbore can be drilled to other offset wells due to collision concerns. This directly impacts the complexity of the directional work and the cost per section. Combining independent wellbore surveys unlocks the potential to improve the wellbore positioning accuracy significantly. It demonstrates the highest wellbore positioning accuracy that can be achieved to date compared with the latest magnetic MWD surveys after correcting all known errors or compared with GWD.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3