A Critical Assessment of Several Reservoir Simulators for Modeling Chemical Enhanced Oil Recovery Processes

Author:

Goudarzi Ali1,Delshad Mojdeh1,Sepehrnoori Kamy1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Interest in chemical enhanced oil recovery (CEOR) processes has intensified in recent years because of rising oil prices as well as the advancement in chemical formulations and injection techniques. Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. Chemical flooding has much broader range of applicability than the past. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulator as a tool for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in CEOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to have reliable predictions of the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data, 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with CEOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts, and UTCHEM from The University of Texas at Austin. The research UTCHEM simulator is included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strength and limitation of each simulator for a given CEOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms and only focus on the process modeling comparison.

Publisher

SPE

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3