Experimental Investigation on Permeability and Porosity Hysteresis of Tight Formations

Author:

Teklu Tadesse Weldu1,Li Xiaopeng1,Zhou Zhou2,Abass Hazim1

Affiliation:

1. Colorado School of Mines

2. China University of Petroleum, Beijing

Abstract

Summary The decrease of permeability and porosity with increasing net stress in consolidated and unconsolidated porous media is a well-known phenomenon to petroleum and geomechanics engineers. Conversely, permeability and porosity are observed to increase when net stress decreases; however, they typically follow a different path; this discrepancy is known as hysteresis. The trend of permeability and porosity hysteresis is a signature of porous media that depends on several chemical, physical, and mechanical properties. Understanding permeability and porosity hysteresis plays a significant role in production strategies of hydrocarbon reservoirs. The hysteresis effect on production strategies can be even more important in very-low-permeability reservoirs such as tight sandstone, tight carbonate, and shale/mudstone formations. The reason is that the stress change associated with permeability and porosity hysteresis can affect adsorption/desorption and diffusion-transport mechanisms that are among the main driving mechanisms in low- or ultralow-permeability reservoirs. In this study, matrix permeability and porosity hysteresis of nano-, micro-, and millidarcy core samples are measured for a wide range of net stresses (500 to 4,500 psia). The matrix includes nano- and micrometer-sized cracks (fractures) that are open or mineral-filled (sealed) cracks. The nano- and microdarcy core samples are from the Niobrara, Bakken, Three Forks, and Eagle Ford formations. The millidarcy core samples are from Middle East carbonate, Indiana Limestone, and Torrey Buff Sandstone formations. Bakken, Three Forks, and Middle East carbonate core samples are from oil-producing reservoirs, whereas others are from outcrop. The major experimental observations of this study are that (a) the stress dependency and hysteresis of permeability and porosity were observed to be larger for nanodarcy cores compared with those of microdarcy and millidarcy core samples; (b) stress dependency and hysteresis of porosity are smaller than those of permeability; (c) pore shape, pore size and their distributions, and mineralogy affect the stress dependency and hysteresis of both permeability and porosity; and (d) increase in permeability with increasing temperature and permeability hysteresis through temperature loading and unloading were observed in organic-rich core sample from Eagle Ford.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3