Innovative Approach to Maximizing Completion Drill Bit Longevity

Author:

Lyles Dustin1,Devers Cameron1,Dyer Warren1,Lyles Shawn1

Affiliation:

1. Taurex Drill Bits

Abstract

Abstract For almost a decade, the predominant completion drill-out bits utilized to drill composite frac plugs were roller-cone (RC) bits incorporating "hybrid" cutting structures. RC hybrid cutting structures consist of various layouts incorporating a combination of milled teeth (MT) and tungsten carbide insert (TCI) cutting elements that exhibit known trade-offs regarding longevity and performance. The objective of this paper is to illustrate how practicing engineers can, and should, question status quo to overcome traditional design/performance limiters. Extensive analysis of hybrid RC dull bits and performance data was conducted with the goal to advance RC completion drill bit longevity and performance while reducing non-productive time (NPT). Through quantifying and classifying cutting structure damage across 30 RC hybrid drill bits, data collected clearly illustrated which portions of the bit profile and cutting elements were sustaining the most damage. The data indicated commonly accepted hybrid RC designs display an inherent weakness that would require questioning common beliefs about completion RC bit design and manufacturing methodologies. A new bit design was developed and extensively field tested. The results of the dull bit evaluation indicated the MT are inherently less robust and result in more performance limiting cutting structure damage. The MT have been utilized as a standard due to industry acceptance, manufacturing limitations associated with implementing the more robust TCI's in all portions of the bit profile and perceived benefits with MT geometry. Implementing full TCI coverage to mitigate cutting structure damage required rethinking longstanding manufacturing methods and cutting element selection that have been accepted as industry standards. Changes in manufacturing methodology required increasing surface hardness of the cone face around TCI's to avoid loss due to interaction with slip debris and/or weakened TCI retention due to erosion. This change required a substantial and challenging shift in heat-treating methods and manufacturing workflow. Further changes were made to the TCI geometries in the new design to ensure the aggressiveness needed to fail soft composite plug materials into small debris sizes was equivalent or better than the MT cutting elements. The manufacturing, material and geometric changes resulted in a solution that contradicted previous trade-off understandings regarding completion drill bits by simultaneously improving durability and aggressiveness. The work exemplifies the importance for practicing engineers continuously to question status quo in pursuit of continuous improvement even when faced with longstanding beliefs and/or methodologies. Furthermore, the findings from the project give insight into completion drill-out trends and opportunities to reduce NPT and improve efficiency.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3