Empirical Prediction of Carbon-Steel Degradation Rates on an Offshore Oil and Gas Facility: Predicting CO2 Erosion-Corrosion Pipeline Failures Before They Occur

Author:

Barker R..1,Hu X..2,Neville A..1,Cushnaghan S..3

Affiliation:

1. University of Leeds

2. Wood Group Integrity Management

3. Shell U.K. Limited

Abstract

Summary Various sections of carbon-steel pipework removed from an offshore facility were found to have experienced severe degradation, partly attributed to an insufficient inhibitor dose rate, as discussed in a previous case study (Hu et al. 2011b). An investigation was conducted to compare the predictive capability of an empirical model generated with data from a submerged-impinging-jet laboratory apparatus. The model was assessed in its ability to determine the rate of thickness loss for carbon-steel pipework subjected to a CO2-containing erosion-corrosion environment, reviewing to what extent the prediction agrees with inspection data. The investigation considers whether the developed tool could have predicted pipework failures on the facility, comparing it with the degradation rate calculated from a leak that occurred within the past 2 years. The program of experiments set out to create a means of prediction with the material-loss data from submerged-impinging-jet tests over a range of conditions replicating those within the line. Information pertaining to the temperature, production rate, and sand loading was collated for the offshore facility. These data were used along with mass-loss results to predict the degradation rate on the asset as a function of time over a 5-year period. This in turn was used to predict the total thickness loss of the pipework wall as a function of time. Consideration was also given to the current use of inhibition (10 ppm Inhibitor A) as well as the predicted thickness losses as a function of time had a candidate inhibitor been used instead (50 ppm Inhibitor B). Limitations of the model are presented, along with suggestions for ways to develop the model further.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3