Model-Based Monitoring and Leak Detection in Oil and Gas Pipelines

Author:

Hauge Espen1,Aamo Ole Morten1,Godhavn John-Morten2

Affiliation:

1. Norwegian University of Science and Technology

2. StatoilHydro ASA

Abstract

Summary An adaptive Luenberger-type estimator for the purpose of monitoring flow conditions and locating and quantifying leakages in petroleum pipelines is presented. The estimator only needs measurements of velocity, pressure, and temperature at the inlet and velocity and pressure at the outlet to function. The measurements are used to form a special set of boundary conditions for the estimator that ensures fast convergence of the estimation error. Depending only on measurements from inlet and outlet makes it possible to use OLGA, which is a state-of-the-art computational fluid dynamics simulator, to govern the one-phase fluid flow of the estimator. The estimator is tested with both a straight, horizontal pipeline and an actual, long pipeline with inclinations, and both simulations with oil and gas are carried out. In order to cope with modeling errors and biased measurements, estimation of roughness in the monitored pipeline is introduced.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Management, Monitoring, Policy and Law,Mechanical Engineering,General Energy,Ocean Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3