Screening In Situ Combustion Applicability for a Heavy Oil Candidate Reservoir with an Accelerating Rate Calorimeter

Author:

Fazlyeva R. R.1,Mallory D. G.1,Moore R. G.1,Mehta S. A.1,Cheremisin A. N.2

Affiliation:

1. University of Calgary

2. Skolkovo Institute of Science and Technology

Abstract

Abstract Air injection has immense potential for hydrocarbon recovery from various reservoirs. One of the screening techniques which can be applied to evaluate a candidate oil for the air injection process is the accelerating rate calorimeter (ARC). The unique feature of this instrument is that it can provide adiabatic conditions and handle experiments at high pressures. This paper reviews four tests performed in closed and flowing ARCs to fingerprint and observe the thermal behavior of a crude oil. The crude oil used for this study is characterized as a 19.3°API and viscosity of 710 mPa.s at 21°C. The oxidation experiments were performed under two scenarios of oil-only and oil in the presence of native carbonate core. Initial starting conditions of each test were at a temperature of 23°C and a reservoir pressure of 13.8 MPa. Flowing ARC experiments showed that Low-Temperature Oxidation occurs at a temperature of about 150°C, whereas ignition occurs at about 350°C when High-Temperature Oxidation region was dominant. However, when using the closed ARC, the thermal behavior of the studied oil appeared to have different temperature characteristics, and the onset of the maximum self-heat rate occurred at temperature of 288°C. The effect of the vapor phase combustion as well as the calculation of kinetic parameters are also discussed in this work.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3