Hydraulic Fracture Monitoring to Reservoir Simulation: Maximizing Value

Author:

Cipolla C. L.1,Williams M. J.1,Weng X..1,Mack M..1,Maxwell S..1

Affiliation:

1. Schlumberger

Abstract

AbstractHydraulic fracture monitoring with microseismic mapping is now routinely used to measure hydraulic fracture geometry, location, and complexity, providing an abundance of information that can be essential to optimizing stimulation treatments and well completions. Although microseismic mapping has added significant value in many different environments, we have yet to fully utilize microseismic data. Significant details can be extracted from microseismic measurements that, when integrated with other information, can improve the characterization of both the reservoir and the hydraulic fracture. In addition, microseismic data has yet to be quantitatively and routinely utilized in reservoir simulation, which is the key to optimization.Geological and geophysical data and wellbore logs can be combined with newly-developed complex fracture propagation models and reservoir simulation models. These models are calibrated using microseismic measurements and production data— closing the loop from microseismic mapping to simulation. The combination of microseismic measurements and complex fracture modeling with sophisticated geological descriptions of pre-existing natural fractures can be used to evaluate existing and predict future well performance in complex shale-gas reservoirs. The application of calibrated complex hydraulic fracture and reservoir simulation models provides more reliable forecasts of well performance resulting from various hydraulic fracture designs and completion scenarios, allowing the selection of the most economic strategy.The optimization process includes a detailed workflow to efficiently integrate the large amount of information and modeling results into a coherent work product. This includes the integration of advanced processing and geomechanical interpretations of microseismic data with newly developed complex hydraulic fracture models that significantly improve the application of microseismic measurements. An example illustrates how HFM can be taken from event locations to production forecasts, showing how the capability to integrate geophysics, geomechanics, hydraulic fracture mechanics, and reservoir simulation can result in significant economic benefits.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3