Ensemble Machine Learning for Data-Driven Predictive Analytics of Drilling Rate of Penetration (ROP) Modeling: A Case Study in a Southern Iraqi Oil Field

Author:

Al-Sahlanee Dhuha T.1,Allawi Raed H.2,Al-Mudhafar Watheq J.3,Yao Changqing4

Affiliation:

1. BP

2. Thi-Qar Oil Company

3. Basrah Oil Company

4. Texas A&M University

Abstract

Abstract Modeling the drill bit Rate of Penetration (ROP) is crucial for optimizing drilling operations as maximum ROP causes fast drilling, reflecting efficient rig performance and productivity. In this paper, four Ensemble machine learning (ML) algorithms were adopted to reconstruct ROP predictive models: Random Forest (RF), Gradient Boosting (GB), Extreme Gradient Boost (XGB), and Adaptive Boosting (AdaBoost). The research was implemented on well data for the entire stratigraphy column in a giant Southern Iraqi oil field. The drilling operations in the oil field pass through 19 formations (including 4 oil-bearing reservoirs) from Dibdibba to Zubair in a total depth of approximately 3200 m. From the stratigraphic column, various lithology types exist, such as carbonate and clastic with distinct thicknesses that range from (40-440) m. The ROP predictive models were built given 14 operating parameters: Total Vertical Depth (TVD), Weight on Bit (WOB), Rotation per Minute (RPM), Torque, Total RPM, flow rate, Standpipe Pressure (SPP), effective density, bit size, D exponent, Gamma Ray (GR), density, neutron, and caliper, and the discrete lithology distribution. For ROP modeling and validation, a dataset that combines information from three development wells was collected, randomly subsampled, and then subdivided into 85% for training and 15% for validation and testing. The root means square prediction error (RMSE) and coefficient of correlation (R-sq) were used as statistical mismatch quantification tools between the measured and predicted ROP given the test subset. Except for Adaboost, all the other three ML approaches have given acceptable accurate ROP predictions with good matching between the ROP to the measured and predicted for the testing subset in addition to the prediction for each well across the entire depth. This integrated modeling workflow with cross-validation of combining three wells together has resulted in more accurate prediction than using one well as a reference for prediction. In the ROP optimization, determining the optimal set of the 14 operational parameters leads to the fastest penetration rate and most economic drilling. The presented workflow is not only predicting the proper penetration rate but also optimizing the drilling parameters and reducing the drilling cost of future wells. Additionally, the resulting ROP ML-predictive models can be implemented for the prediction of the drilling rate of penetration in other areas of this oil field and also other nearby fields of the similar stratigraphic columns.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3