Affiliation:
1. China University of Petroleum, Beijing
Abstract
Summary
Alkali/surfactant/polymer (ASP) flooding is one of the most-promising enhanced-oil-recovery (EOR) technologies. Strong alkali (NaOH) was used in early field tests mainly because of its stronger emulsification ability and wider surfactant range, which can meet the requirements of ultralow interfacial tension (IFT). However, subsequent field tests indicated that the advantages of a strong alkali did not outweigh the disadvantages caused by serious scaling and production-capacity loss. Although a critical comparison of strong alkali ASP (SASP) and weak alkali ASP (WASP) on the basis of field tests is quite difficult and complex, considering the small differences in reservoir characteristics, injected fluid, and operational changes, the two completed field tests in Daqing provided us with valuable and important information.
The petrophysical features of the two field tests were similar. The well spacings and well patterns of the two field tests were critically the same, and the same screening standards and design ideas were followed. The incremental recoveries of WASP and SASP were nearly the same, while WASP had a higher peak oil production than SASP after the injection took effect. WASP was proved to have less liquid-producing-capacity loss than SASP. The emulsification effects of WASP were weaker than those of SASP, which also lowered the difficulty and cost of the treatment of the emulsified fluid. The chromatographic separation was different in the two pilot tests, in which WASP had alleviated chromatographic separation. Breakthrough of the polymer occurred before the alkali followed by the surfactant, and this occurred at 0.06 pore volumes (PV) for SASP but was delayed until 0.13 PV for the WASP flooding. The scaling of SASP was much-more severe than that of WASP, leading to a much-higher treatment cost. The economic performances of the two tests, which are of vital importance in a low-oil-price era, were quite different, and WASP had much-better performance than SASP. The input/output ratios of WASP in B-2-X and SASP in B-1-DD were 1:3.7 and 1:2.3, respectively. The returns on investment (ROIs) of WASP in B-2-X and SASP in B-1-DD were 19.1 and 12.9%, respectively, whereas the financial internal rates of return (FIRRs) after tax were 22.3 and 18.0%, respectively. The average FIRR of local oil-industry projects is 12%. Field tests indicated that WASP is both technically and economically better than SASP under the conditions in the Daqing oil field.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献