Unique System for Underbalanced Drilling Using Air in the Marcellus Shale

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 171024, ’Unique System for Underbalanced Drilling by Use of Air in the Marcellus Shale,’ by Chris Maranuk, SPE, Ali Rodriguez, SPE, Joe Trapasso, SPE, and Joshua Watson, SPE, Weatherford, prepared for the 2014 SPE Eastern Regional Meeting, Charleston, West Virginia, USA, 21-23 October. The paper has not been peer reviewed. Air drilling has become popular in the Marcellus and Utica shale reservoirs because of its higher rate of penetration (ROP) and less resulting formation damage. A unique drilling system incorporating the use of downhole mud motors, electromagnetic (EM) measurement-while-drilling (MWD), and air hammers has been specifically designed and ruggedized to address downhole shock and vibration encountered in air drilling. Use of this system has resulted in significant reduction of nonproductive time (NPT). Introduction While seeking alternatives to increase ROP and reduce drilling costs, a few operators in the northeastern US implemented batch-drilling practices from pad locations. This provides an attractive alternative by allowing multiple wells to share the same surface location, effectively reducing footprint and environmental impact. Common well design uses streamlined well construction, where low-cost rigs can drill the tophole sections and larger, more-expensive rigs drill the curve and lateral sections. The typical well plan incorporates surface, intermediate, curve, and lateral sections that, combined, may exceed 18,000 ft. The lateral sections are the most critical and range between 2,000 and 8,000 ft, depending on formation and well geometry. The goal for close-proximity-well design is to minimize well-to-well interference and maximize reservoir exposure. Air drilling provides a significant decrease in hydrostatic pressure over common mud types, resulting in an increased ROP. Additionally, significantly better hole cleaning can be achieved because of the high air velocities used to drill the well. Finally, mud- and cuttings-handling costs can be reduced because there are no chemicals to absorb and no cuttings-cleaning requirements on virgin formations. Early tests of this application proved it to be a viable option for the Marcellus and the Utica fields. Initially, hammer bits were used for air drilling, but significant challenges involving directional control emerged as well-plan trajectories became more advanced. The development of ruggedized mud motors and MWD tools capable of handling these challenges, and the use of specialized fluid-control systems, eventually allowed more-conventional bottomhole assemblies (BHAs) to be successful when used for air drilling.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3