Mixtures of Anionic/Cationic Surfactants: A New Approach for Enhanced Oil Recovery in Low-Salinity, High-Temperature Sandstone Reservoir

Author:

Li Yingcheng1,Zhang Weidong1,Kong Bailing2,Puerto Maura3,Bao Xinning1,Sha Ou1,Shen Zhiqin1,Yang Yiqing1,Liu Yanhua2,Gu Songyuan1,Miller Clarence3,Hirasaki George J.3

Affiliation:

1. Sinopec Shanghai Research Institute of Petrochemical Technology

2. Sinopec Henan Oil Field Company

3. Rice University

Abstract

Summary Test results indicate that a lipophilic surfactant can be designed by mixing both hydrophilic anionic and cationic surfactants, which broaden the design of novel surfactant methodology and application scope for conventional chemical enhanced-oil-recovery (EOR) methods. These mixtures produced ultralow critical micelle concentrations (CMCs), ultralow interfacial tension (IFT), and high oil solubilization that promote high tertiary oil recovery. Mixtures of anionic and cationic surfactants with molar excess of anionic surfactant for EOR applications in sandstone reservoirs are described in this study. Physical chemistry properties, such as surface tension, CMC, surface excess, and area per molecule of individual surfactants and their mixtures, were measured by the Wilhelmy (1863) plate method. Morphologies of surfactant solutions, both surfactant/polymer (SP) and alkaline/surfactant/polymer (ASP), were studied by cryogenic-transmission electron microscopy (Cryo-TEM). Phase behaviors were recorded by visual inspection including crossed polarizers at different surfactant concentrations and different temperatures. IFTs between normal octane, crude oil, and surfactant solution were measured by the spinning-drop-tensiometer method. Properties of IFT, viscosity, and thermal stability of surfactant, SP, and ASP solutions were also tested. Static adsorption on sandstone was measured at reservoir temperature. IFT was measured before and after multiple contact adsorptions to recognize the influence of adsorption on interfacial properties. Forced displacements were conducted by flooding with water, SP, and ASP. The coreflooding experiments were conducted with synthetic brine with approximately 5,000 ppm of total dissolved solids (TDS), and with a crude oil from a Sinopec reservoir.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3