Abstract
Abstract
Most of the shale reservoirs in US land are naturally fractured. The fracture intensity and types vary from one shale to another. Even within the same shale in the same field, the heterogeneity of fracture intensity can be often expected to be high in a horizontal well. The current popular geometrical completion design can potentially ignore the existence of natural fractures. Hence, maximizing stimulation efficiency without understanding existing natural fractures can be a challenge. In this paper, study was made of the majority of the published case studies related to natural fractures in the US shales in the last 20 years. The evidence of natural fractures from either outcrops or subsurface data, i.e. core, borehole images, or other data is summarized for each studied shale. The latest studies show that the hydraulic fracture propagation can be strongly influenced by existing natural fractures regardless of whether they are open or closed. The roles of existing fractures in the shales include: 1) providing enhanced reservoir permeability for improved productivity if they are open and effectively connected by hydraulic fractures; 2) promoting much better fracturing network complexity regardless of whether they are open or closed prior to the stimulation; 3) giving possible negative impact sometimes, i.e. high water cut, if they are connected with wet zones below or above the reservoirs. It can be concluded that engineered completion designs that employ accurate knowledge of natural fracture data, in-situ stresses, and other reservoir and completion quality indicators as inputs can provide opportunities for enhancing stimulation efficiency and fracturing network complexity. This in turn can lead to better connectivity to a larger reservoir volume and access to more drainage area in the shales.
Introduction
The US shale gas story actually featured natural fractures. William Hart, a local gunsmith, drilled the first commercial natural shale gas well in US in Fredonia, Chautauqua County, NY in 1821, in shallow, low-pressure rock with fractures[1] [2]. The well was first dug to a depth of 27ft in a shale which outcropped in the area, then later drilled to a depth of 70ft using 1.5 inch diameter borehole. The produced gas was piped to an innkeeper on a stagecoach route[1]. Then the well was produced without any stimulation for 37 years until 1858 when it supplied enough natural gas for a grist mill and for lighting in four shops. It was a combination of the idea from Mr. Hart to drill the well and the presence of the natural fractures in the gas shale that made the 1st commercial shale gas discovery possible in shale gas history.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献