Evaluation of Derived Controllable Variables for Predicting Rop Using Artificial Intelligence in Autonomous Downhole Rotary Drilling System

Author:

Amadi Kingsley Williams1,Iyalla Ibiye2,Liu Yang3,Alsaba Mortadha1,Kuten Durdica1

Affiliation:

1. Australian College of Kuwait

2. Robert Gordon University Aberdeen

3. University of Exeter, England

Abstract

Abstract Fossil fuel energy dominate the world energy mix and plays a fundamental role in our economy and lifestyle. Drilling of wellbore is the only proven method to extract the hydrocarbon reserves, an operation which is both highly hazardous and capital intensive. To optimize the drilling operations, developing a high fidelity autonomous downhole drilling system that is self-optimizing using real-time drilling parameters and able to precisely predict the optimal rate of penetration is essential. Optimizing the input parameters; surface weight on bit (WOB), and rotary speed (RPM) which in turns improves drilling performance and reduces well delivery cost is not trivial due to the complexity of the non-linear bit-rock interactions and changing formation characteristics. However, application of derived variables shows potential to predict rate of penetration and determine the most influential parameters in a drilling process. In this study the use of derived controllable variables calculated from the drilling inputs parameters were evaluated for potential applicability in predicting penetration rate in autonomous downhole drilling system using the artificial neutral network and compared with predictions of actual input drilling parameters; (WOB, RPM). First, a detailed analysis of actual rock drilling data was performed and applied in understanding the relationship between these derived variables and penetration rate enabling the identification of patterns which predicts the occurrence of phenomena that affects the drilling process. Second, the physical law of conservation of energy using drilling mechanical specific energy (DMSE) defined as energy required to remove a unit volume of rock was applied to measure the efficiency of input energy in the drilling system, in combination with penetration rate per unit revolution and penetration rate per unit weight applied (feed thrust) are used to effective predict optimum penetration rate, enabling an adaptive strategize which optimize drilling rate whilst suppressing stick-slip. The derived controllable variable included mechanical specific energy, depth of cut and feed thrust are calculated from the real- time drilling parameters. Artificial Neutral Networks (ANNs) was used to predict ROP using both input drilling parameters (WOB, RPM) and derived controllable variables (MSE, FET) using same network functionality and model results compared. Results showed that derived controllable variable gave higher prediction accuracy when compared with the model performance assessment criteria commonly used in engineering analysis including the correlation coefficient (R2) and root mean square error (RMSE). The key contribution of this study when compared to the previous researches is that it introduced the concept of derived controllable variables with established relationship with both ROP and stick-slip which has an advantage of optimizing the drilling parameters by predicting optimal penetration rate at reduced stick-slip which is essential in achieving an autonomous drilling system. :

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3