A General Modeling Framework for Simulating Complex Recovery Processes in Fractured Reservoirs at Different Resolutions

Author:

Hui Mun-Hong (Robin)1,Karimi-Fard Mohammad2,Mallison Bradley1,Durlofsky Louis J.2

Affiliation:

1. Chevron Energy Technology Company

2. Stanford University

Abstract

Summary A comprehensive methodology for gridding, discretizing, coarsening, and simulating discrete-fracture-matrix models of naturally fractured reservoirs is described and applied. The model representation considered here can be used to define the grid and transmissibilities, either at the original fine scale or at coarser scales, for any connectivity-list-based finite-volume flow simulator. For our fine-scale mesh, we use a polyhedral-gridding technique to construct a conforming matrix grid with adaptive refinement near fractures, which are represented as faces of grid cells. The algorithm uses a single input parameter to obtain a suitable compromise between fine-grid cell quality and the fidelity of the fracture representation. Discretization using a two-point flux approximation is accomplished with an existing procedure that treats fractures as lower-dimensional entities (i.e., resolution in the transverse direction is not required). The upscaling method is an aggregation-based technique in which coarse control volumes are aggregates of fine-scale cells, and coarse transmissibilities are computed with a general flow-based procedure. Numerical results are presented for waterflood, sour-gas injection, and gas-condensate primary production for fracture models with matrix and fracture heterogeneities. Coarse-model accuracy is shown to generally decrease with increasing levels of coarsening, as would be expected. We demonstrate, however, that with our methodology, two orders of magnitude of speedup can typically be achieved with models that introduce less than approximately 10% error (with error appropriately defined). This suggests that the overall framework may be very useful for the simulation of realistic discrete-fracture-matrix models.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3