An Equation of State Compositional Model

Author:

Coats Keith H.1

Affiliation:

1. Intercomp Resource Development and Engineering Inc.

Abstract

Abstract This paper describes an implicit, three-dimensional formulation for simulating compositional-type reservoir problems. The model treats three-phase flow in Cartesian (x-y-z) or cylindrical (r-theta-z) geometries. Applicability ranges from depletion or cycling of volatile oil and gas condensate to miscible flooding operations involving either outright or multicontact-miscibility.The formulation uses an equation of state for phase equilibrium and property calculations. The equation of state provides consistency and smoothness as gas- and oil-phase compositions and properties converge near a critical point. This avoids computational problems near a critical point associated with use of different correlations for K values as opposed to phase densities. Computational testing with example multicontact-miscibility (MCM) problems indicates stable convergence of this formulation as phase properties converge at a critical point. Results for these MCM problems show significant numerical dispersion, primarily affecting the calculated velocity of the miscible-front advance. Our continuing effort is directed toward reduction of this numerical disperson and comparison of model results with laboratory experiments for both MCM and outright-miscibility cases.We feel that the implicit nature of the model enhances efficiency as well as reliability for most compositional-type problems. However, while we report detailed problem results and associated computing times, we lack similar reported times to compare the overall efficiency of an implicit compositional formulation with that of a semi-implicit formulation. Introduction Many papers have treated increasingly sophisticated or efficient methods for numerical modeling of black-oil reservoir performance. That type of reservoir allows an assumption that reservoir gas and oil have different but fixed compositions, with the solubility of gas in oil being dependent on pressure alone.A smaller number of papers have presented numerical models for simulating isothermal "compositional" reservoirs, where oil and gas equilibrium compositions vary considerably with spatial position and time. With some simplification, the reservoir problems requiring compositional treatment can be divided into two types. The first type is depletion and/or cycling of volatile oil and gas condensate reservoirs. The second type is miscible flooding with MCM generated in situ.A distinction between these types is that the first usually involves phase compositions removed from the critical point, while the second type generally requires calculation of phase compositions and properties converging at the critical point. A compositional model should be capable of treating the additional problem of outright miscibility where the original oil and injected fluid are miscible on first contact.A difficulty in modeling the MCM process is achievement of consistent, stable convergence of gas-and oil-phase compositions, densities, and viscosities as the critical point is approached. A number of studies have reported models that use different correlations for equilibrium K-values as opposed to phase densities. Use of an equation of state offers the advantage of a single, consistent source of calculated K-values, phase densities, and their densities near a critical point. SPEJ P. 363^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 223 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3