A Unified Algorithm for Phase-Stability/Split Calculation for Multiphase Isobaric-Isothermal Flash

Author:

Zhu Di1,Eghbali Sara2,Shekhar Chandra1,Okuno Ryosuke1

Affiliation:

1. University of Texas at Austin

2. University of Alberta

Abstract

Summary The conventional method for multiphase flash is the sequential usage of phase-stability and phase-split calculations. Multiphase flash requires the conventional method to obtain multiple false solutions in phase-split calculations and correct them in phase-stability analysis. Improvement of the robustness and efficiency of multiphase flash is important for compositional flow simulation with complex phase behavior. This paper presents a new algorithm that solves for stationary points of the tangent-plane-distance (TPD) function defined at an equilibrium-phase composition for isobaric-isothermal (PT) flash. A solution from the new algorithm consists of two groups of stationary points: tangent and nontangent stationary points of the TPD function. Hence, equilibrium phases, at which the Gibbs free energy is tangent to the TPD function, are found as a subset of the solution. Unlike the conventional method, the new algorithm does not require finding false solutions for robust multiphase flash. The advantage of the new algorithm in terms of robustness is more pronounced for more-complex phase behavior, for which multiple local minima of the Gibbs free energy are present. Case studies show that the new algorithm converges to a lower Gibbs free energy compared with the conventional method for the complex fluids tested. It is straightforward to implement the algorithm because of the simple formulation, which also allows for an arbitrary number of iterative compositions. It can be robustly initialized even when no K value correlation is available for the fluid of interest. Although the main focus of this paper is on robust solution of multiphase flash, the new algorithm can be used to initialize a second-order convergent method in the vicinity of a solution.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3