The Development and Application of Real-Time Deep Learning Models to Drive Directional Drilling Efficiency

Author:

Cao Dingzhou1,Hender Don2,Ariabod Sam3,James Chris1,Ben Yuxing1,Lee Micheal1

Affiliation:

1. Occidental Petroleum Corporation

2. IPCOS

3. Apex Systems

Abstract

Abstract This paper provides the technical details to develop a real-time deep learning model to detect and estimate the duration of downlinking sequences of Rotary Steerable Systems (RSS) based on a single measurement (standpipe pressure, SPP). Further analytics are derived based on the downlink recognition results together with other real-time log data (ROP, RPM, Torque, etc.) to drive directional drilling efficiency. Real-time RSS downlink recognition is treated as an image segmentation problem. The Deep Learning (DL) models were created using the dynamic U-Net concept and materialized with a pre-trained ResNet-34 as the underlying architecture. Transfer learning was used due to the limited number of training samples (≪ 100 downlinks per onshore well) to help with speed and accuracy. The SPP time series data was segmented based on stand of pipe drilled (one image per stand). This "image" was then fed into the model for downlink recognition. To further increase the accuracy, a second opinion mechanism was applied when the models were tested and deployed into the Real-Time Drilling (RTD) system. Using a dual model approach greatly reduced the number of false positives due to non-downlink pressure fluctuations causing "noise". The patterns of SPP and its rate of change (delta SPP) are quite different. They both have pros and cons for identifying the downlink, thus two independent models were built based on these two signals. The DL model A is trained based on the original SPP signal and the DL model B is trained based on delta SPP. A downlink is confirmed only when both models show positive results. Data of 10 onshore wells (2 rigs) drilled with RSS were segmented (8165 images in total) and labeled. There were 671 images with 795 downlinks and 7980 images without downlink. The five-fold cross-validation technique was used to identify the best model(s). The F1 score of blind test result was .991 (accuracy was ~99.82%, see Table 2). The relative error of duration estimation is 2.49%. The current rig fleet within the RTD system has a mix of drilling tool configurations - RSS and mud motors. To further validate the models’ robustness regarding drilling tools, additional tests were conducted using mud motor wells’ datasets from 21 rigs (25431 images without downlink). There were 3 false negatives from this extended test set, which resulted in a ~99.93% accuracy for the aggregated 31 wells dataset. These results suggest that the models are accurate, reliable and robust. The real-time DL solution presented in this paper enables operators to analyze RSS performance during and between downlinking events. This would allow drilling engineers and rig supervisors to make faster, more reliable data-driven decisions to optimize performance and directional control of the well path.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3