Evaluation of Air Injection into Mature SAGD Chambers as a Follow Up/Wind-Down Strategy, Using a Novel Large Scale 3-D Physical Model

Author:

Aminfar Ehsan1,Sequera-Dalton Belenitza1,Mehta Sudarshan Raj1,Moore Gordon1,Ursenbach Matthew1

Affiliation:

1. University of Calgary

Abstract

Abstract The injection of air into mature steam chambers is a promising technology to reduce the steam-to-oil-ratios (SOR) in late stages of the Steam-Assisted-Gravity-Drainage (SAGD) recovery process in Athabasca oil sand reservoirs in Alberta, Canada. Air injection allows sustaining steam chamber pressures with reduced steam injection rates. The steam capacity that becomes available due to the replacement of steam with air in mature well-pairs or pads could serve new pads optimizing steam utilization and decreasing the overall environmental footprint of the project. A novel large scale three-dimensional (3-D) physical model was designed to evaluate the prospect of the "hybrid" air and steam injection technology in a SAGD configuration utilizing up to three well-pairs. This paper discusses the 3-D model design, commissioning, experimental procedure and main results of the first tests. For each test, the 3-D model was packed with a low oil saturation core or lean zone, representing the reservoir portion swept by steam, and a high oil saturation core or rich zone representing the un-drained zone between two coalesced steam chambers. These zones were made with preserved native "lean" and "rich" cores from Athabasca reservoirs. Once the model was packed, it was placed inside a pressure jacket where it was pressurized to reservoir pressure. Steam was injected into the model to develop a representative steam chamber in the lean zone. Once steam conditions were attained in the lean zone, steam injection was switched to air injection. Temperatures distributed in the 3-D model as well as injection and production pressures and produced gas compositions were monitored constantly and recorded during the test. Produced liquid samples were regularly captured and stored for subsequent analysis. Post-processing analyses of produced fluids and residual extracted core material allowed for determination of clean-burned zones, material balance, upgrading of the produced bitumen samples and efficiency of the process. High peak temperatures, gas compositions, clean-burned sand in post-test cores and significant oil production indicate the development of a high temperature combustion front in the 3-D experiments. The test results confirm the injection of air into mature SAGD chambers is a very promising method not only to reduce the cumulative steam-to-oil-ratios (CSOR) and to sustain the steam chamber pressures but also to increase oil production in SAGD late life.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3