Message Passing Interface (MPI) Parallelization of Iteratively Coupled Fluid Flow and Geomechanics Codes for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Part 2: Parallel Performance and Application

Author:

Zhang Jiecheng1ORCID,Moridis George J.2,Blasingame Thomas A.3

Affiliation:

1. Texas A&M University (Corresponding author)

2. Texas A&M University and Lawrence Berkeley National Laboratory

3. Texas A&M University

Abstract

Summary The reservoir geomechanics simulator (RGMS or RGM simulator), a geomechanics simulator based on the finite element method and parallelized using the Message Passing Interface (MPI), is developed in this work to model the stresses and deformations in subsurface systems. RGMS can be used standalone or coupled with flow and transport models. pTOUGH+HYDRATE (pT+H) V1.5, a parallel MPI-based version of the serial TOUGH+HYDRATE (T+H) V1.5 code that describes mass and heat flow in hydrate-bearing porous media, is also developed. Using the fixed-stress split iterative scheme, RGMS is coupled with the pT+H V1.5 to investigate the geomechanical responses associated with gas production from hydrate accumulations. In the second paper of this series, the parallel performance of the codes is tested on the Texas A&M University Ada Linux cluster using up to 512 processes and on a Mac Pro computer with 12 processes. The investigated problems are: Group 1: Geomechanical problems solved by RGMS in 2D Cartesian and cylindrical domains and a 3D problem, involving 4×106 and 3.375×106 elements, respectively; Group 2: Realistic problems of gas production from hydrates using pT+H V1.5 in 2D and 3D systems with 2.45×105 and 3.6×106 elements, respectively; Group 3: The 3D problems in Group 2 solved with the coupled RGMS-pT+H V1.5 simulator, fully accounting for geomechanics. Two domain partitioning options are investigated on the Ada Linux cluster and the Mac Pro, and the code parallel performance is monitored. On the Ada Linux cluster using 512 processes, the simulation speedups (a) of RGMS are 218.89, 188.13, and 284.70 in the Group 1 problems, (b) of pT+H V1.5 are 174.25 and 341.67 in the Group 2 cases, and (c) of the coupled simulators are 134.97 and 331.80 in the Group 3 cases. The results produced in this work show the necessity of using full geomechanics simulators in marine hydrate-related studies because of (a) the associated pronounced geomechanical effects on production and displacements and (b) the effectiveness of the parallel simulators developed in this study, which can be the only realistic option in these complex simulations of large multidimensional domains.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3