Engineered Composite Lost Circulation Solution to Successfully Cure Total Losses During Drilling Across Naturally Fractured Formations in Ghawar Gas Field, Saudi Arabia

Author:

Siddiqi Faizan Ahmed1,Caballero Carlos Arturo Banos1,Moretti Fabricio1,AlMahroos Mohamed1,Aswal Uttam1,Atriby Kamal1

Affiliation:

1. Schlumberger

Abstract

Abstract Lost circulation is one of the major challenges while drilling oil and gas wells across the world. It not only results in nonproductive time and additional costs, but also poses well control risk while drilling and can be detrimental to zonal isolation after the cementing operation. In Ghawar Gas field of Saudi Arabia, lost circulation across some naturally fractured formations is a key risk as it results in immediate drilling problems such as well control, formation pack-off and stuck pipe. In addition, it can lead to poor isolation of hydrocarbon-bearing zones that can result in sustained casing pressure over the life cycle of the well. A decision flowchart has been developed to combat losses across these natural fractures while drilling, but there is no single solution that has a high success rate in curing the losses and regaining returns. Multiple conventional lost circulation material pills, conventional cement plugs, diesel-oil-bentonite-cement slurries, gravel packs, and reactive pills have been tried on different wells, but the probability of curing the losses is quite low. The success with these methods has been sporadic and shown poor repeatability, so the need of an engineered approach to mitigate losses is imperative. An engineered composite lost-circulation solution was designed and pumped to regain the returns successfully after total losses across two different formations on a gas well in Ghawar field. Multiple types of lost-circulation material were tried on this well; however, all was lost to the naturally fractured carbonate formation. Therefore, a lost-circulation solution was proposed that included a fiber-based lost-circulation control (FBLC) pill, composed of a viscosifier, optimized solid package and engineered fiber system, followed by a thixotropic cement slurry. The approach was to pump these fluids in a fluid train so the FBLC pill formed a barrier at the face of the formation while the thixotropic cement slurry formed a rapid gel and quickly set after the placement to minimize the risk of losing all the fluids to the formation. Once this solution was executed, it helped to regain fluid returns successfully across one of the naturally fractured zones. Later, total losses were encountered again across a deeper loss zone that were also cured using this novel approach. The implementation of this lost-circulation system on two occasions in different formations has proven its applicability in different conditions and can be developed into a standard engineered approach for curing losses. It has greatly helped to build confidence with the client, as it contributed towards minimizing non-productive time, mitigated the risk of well control, and assisted in avoiding any remedial cementing operations that may have developed due to poor zonal isolation across certain critical flow zones.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3