Data-Driven Modeling Approach for Recovery Performance Prediction in SAGD Operations

Author:

Amirian Ehsan1,Leung Juliana Y.1,Zanon Stefan2,Dzurman Peter2

Affiliation:

1. University of Alberta

2. Nexen Inc.

Abstract

Abstract Quantitative ranking of different operating areas and assessment of uncertainty due to reservoir heterogeneities are crucial elements in optimization of production and development strategies in oil sands operations. Although detailed compositional simulators are available for recovery performance evaluation for SAGD, the simulation process is usually deterministic, cumbersome, expensive (manpower and time consuming), and not quite suitable for real-time decision making and forecasting. In this paper, Artificial Neural Network (ANN) is employed as a data-driven modeling alternative to predict SAGD recovery performance in heterogeneous reservoirs, an important application that is lacking in existing literature. In this study, numerical flow simulations are performed to construct a training data set consists of various attributes describing characteristics associated with reservoir heterogeneities and relevant production/injection parameters with the corresponding recovery factor as output. The network is trained using the data set to identify all significant patterns and relationships that exist between these attributes and the output parameters. The model is then tested using a verification data set (cases that have not been used at the training stage). Sensitivity studies on network configurations are also investigated. In addition, new modifications are proposed to identify and reduce extrapolations in predictions, which are often considered as major drawbacks in most data-driven modeling approaches. The approach described in this paper can be integrated directly into most existing reservoir management routines. In addition, the technique can be used as a viable tool for analyzing large amount of competitor data efficiently. Given that robust forecasting and optimization of heavy oil recovery processes is a major challenge faced by the industry, the proposed research has great potential to be applied in other recovery projects such as solvent-additive steam injection.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3