Tying Stage Architecture to Wolfcamp Performance

Author:

Barhaug J. L.1,Hughes D. R.1,Ramos C. R.2,Klein C. M.2,Lawrence M.3,Mazza J. J.4,Havens J. B.5

Affiliation:

1. Ovintiv, Denver, CO, USA

2. Corelab, Denver, CO, USA

3. Ziebel, Houston, TX, USA

4. FractureID, now with ESG Solutions, Denver, CO, USA

5. FractureID Denver, CO, USA

Abstract

Abstract While post-frac erosion and Fracture Driven Interactions (FDI) can be good indicators of a successful frac, getting long-term performance data has mainly been limited to full wellbores of a single design and waiting months for the results. The Permian Asset team was debating the impact of stage architecture on production. Did different designs come on strong, but then fall off over time? Could a doubling of flow area from the standard design lead to a doubling of performance? An experiment was designed to answer these questions with a toolbox of emerging production diagnostics. By combining these latest techniques with some geologic characterization from in-bit accelerometer data, performance of a particular design can be examined on a single wellbore, saving time and money. Three different stage architecture designs were alternated along a Wolfcamp wellbore. These designs were selected to look at the impact of cluster and stage spacing and perforation orientation. A novel methodology for oil tracers (AB testing) was deployed in the test well. Oil tracers that had previously underwent calibration testing for an affinity for each other and the reservoir were pumped during frac. A unique oil tracer was pumped per design. Additionally, an oil tracer was pumped in stages along a greenfield portion of the lateral and another in brownfield stages next to a parent well. A carbon fiber rod was run to get an initial look at production allocation by cluster, stage, and design type, allowing a comparison to oil tracers at that snapshot in time. Depletion analysis was calculated by stage along the entirety of the lateral. Depletion values ranged from 0 up to 500 psi. Despite lateral variability, when averaged by design type, the depletion values were within the margin of error. The oil tracer is showing that an extended stage length 0 degree phased stage (300’ Top Shots) is the top performer versus an extended stage length 90-270 deg phased design (300’ 90/270) and a design with half the stage length and cluster spacing to double the flow area (150’ Top Shots). Initially, the greenfield portion of the lateral (3600’ in the toe) was outperforming the next 3600’ of lateral adjacent to a parent well, but this trend reversed over time. The carbon fiber rod provided a cluster level analysis with the majority of the clusters contributing to the overall production. There is a heel bias associated with the well that is in directional agreement with the greenfield and brownfield tracers at the time of deployment. The rod has the most production attributed to the 150’ Top Shot design, followed by the 300’ Top Shots, with the 300’ 90/270 design coming in last. There is a discrepancy between the top design with the oil tracer and fiber rod data. This could be a normalization issue or a water allocation problem. Continued work is needed in this space to find the root cause. Overall, the stacked diagnostics provided actionable insights on completion designs that can inform future deployments.

Publisher

SPE

Reference11 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perfectly Stressed Out: Surface and Downhole Imaging Relations;Day 2 Wed, February 07, 2024;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3