A Recurrent Neural Network–Based Proxy Model for Well-Control Optimization with Nonlinear Output Constraints

Author:

Kim Yong Do1,Durlofsky Louis J.2

Affiliation:

1. Stanford University (Corresponding author; email: ykim07@stanford.edu)

2. Stanford University

Abstract

Summary In well-control optimization problems, the goal is to determine the time-varying well settings that maximize an objective function, which is often the net present value (NPV). Various proxy models have been developed to predict NPV for a set of inputs such as time-varying well bottomhole pressures (BHPs). However, when nonlinear output constraints (e.g., maximum well/field water production rate or minimum well/field oil rate) are specified, the problem is more challenging because well rates as a function of time are required. In this work, we develop a recurrent neural network (RNN)–based proxy model to treat constrained production optimization problems. The network developed here accepts sequences of BHPs as inputs and predicts sequences of oil and water rates for each well. A long-short-term memory (LSTM) cell, which is capable of learning long-term dependencies, is used. The RNN is trained using well-rate results from 256 full-order simulation runs that involve different injection and production-well BHP schedules. After detailed validation against full-order simulation results, the RNN-based proxy is used for 2D and 3D production optimization problems. Optimizations are performed using a particle swarm optimization (PSO) algorithm with a filter-based nonlinear-constraint treatment. The trained proxy is extremely fast, although optimizations that apply the RNN-based proxy at all iterations are found to be suboptimal relative to full simulation-based (standard) optimization. Through use of a few additional simulation-based PSO iterations after proxy-based optimization, we achieve NPVs comparable with those from simulation-based optimization but with speedups of 10 or more (relative to performing five simulation-based optimization runs). It is important to note that because the RNN-based proxy provides full well-rate time sequences, optimization constraint types or limits, as well as economic parameters, can be varied without retraining. NOTE: This paper is published as part of the 2021 Reservoir Simulation Conference Special Issue.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3