Improving the Ensemble Optimization Method Through Covariance Matrix Adaptation (CMA-EnOpt)

Author:

Fonseca R. M.1,Leeuwenburgh O..2,Van den Hof P. M.1,Jansen J. D.1

Affiliation:

1. 1Delft University of Technology

2. 2TNO

Abstract

Abstract Ensemble Optimization (EnOpt) is a rapidly emerging method for reservoir model based production optimization. EnOpt uses an ensemble of controls to approximate the gradient of the objective function with respect to the controls. Current implementations of EnOpt use a Gaussian ensemble with a constant standard deviation, i.e. a diagonal covariance matrix with entries that remain constant during the optimization process. The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a gradient-free optimization method, developed in the ‘machine learning’ community, which also uses an ensemble of controls but with a covariance matrix that is continually updated during the optimization process. It has shown to be an efficient method for several difficult small dimension optimization problems and has recently been applied in the petroleum industry for well location and production optimization. In this study we investigated the scope to improve the computational efficiency of EnOpt through the use of covariance adaptation (CMA-EnOpt). We optimized water flooding of a multi-layer sector model containing multiple sealing and non-sealing faults. The controls used were inflow control valve settings at pre-defined time intervals for injectors and producers with undiscounted net present value as the objective function. We compared EnOpt and CMA-EnOpt starting from identical covariance matrices. We achieved slightly higher (0.7%-1.8%) objective function values and modest speed-ups with CMA-EnOpt compared to EnOpt, depending on choice of user-defined parameters in both algorithms. However, the major benefit of CMA-EnOpt is its robustness with respect to the initial choice of the covariance matrix. A poor choice of the initial matrix can be detrimental to EnOpt, whereas the CMA-EnOpt performance is near-independent of the initial choice.

Publisher

SPE

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3