Investigation of Geometry and Loading Effects on PDC Cutter Structural Integrity in Hard Rocks

Author:

Rahmani Reza1,Pastusek Paul2,Yun Geng1,Roberts Tom1

Affiliation:

1. National Oilwell Varco

2. ExxonMobil Integrated Solutions Company

Abstract

Abstract Robustness of round and v-shaped polycrystalline diamond compact (PDC) cutters against mechanical and thermal load was evaluated. Forensic analysis was used to estimate the range of loads and depths-of-cut (DOC) that cause structural overload of PDC cutters. Finite element analyses (FEA) were calibrated against this data and used to estimate the integrity of cutters. Thermal-abrasive wear was tested with single cutter tests on Sierra White granite with and without cooling for multiple material grades. The axial and tangential impact resistance were evaluated with drop and front face impact tests. In addition, full-scale lab drilling tests were conducted in granite (UCS=28,000 psi) and quartzite (UCS=56,000 psi). Finally, failures for round and v-shaped cutters were evaluated in field trials. The v-shaped cutters scored similar to baseline cutters in thermal-abrasive tests, but lower in axial impact tests. They also failed at 13-18% lesser tangential load. By accounting for 16% reduction in contact area between the shaped cutter and load anvil, it was concluded that both cutter geometries fail essentially at the same stress. In all full-scale tests, round cutters failed before the shaped cutters. This was in contrast with drop tests and is attributed to the shaped cutter's cutting efficiency, resulting in lesser load on the cutters for the same ROP. The results were then compared with field runs in hard and interbedded application in Oklahoma and West Texas. The conclusion based on FEA, lab, and field data was that in a majority of the cases, this shaped cutter shows the same or better dull as its base grade.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3