Evaluation of High Dissolving-Power Retarded Acid Recipes for Carbonate Acidizing

Author:

Aljuryyed Norah1,Al Moajil Abdullah1,Alghamdi Saeed1,AlDarweesh Sajjad1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Development of retarded acid recipes that can have both adequate dissolving power and controllable reaction rate is desired to maximize the effectiveness of matrix stimulation treatments for oil and gas wells. Hydrochloric acid (HCl) has high dissolving power, however, the reaction rate with carbonate rock is uncontrollable and can cause face dissolution. Organic acids have low dissolving power and controllable reaction rate. The objective of this paper was to compare the effectiveness of three low viscosity retarded acid recipes with dissolving powers of 15 wt% and >20 wt% HCl equivalent. The examined acid recipes were 15/28 wt% emulsified acids, retarded acid recipes #1, #2 and #3, and 15/26 wt% HCl. The emulsified acids were at 30:70 ratio of diesel to acid. The retarded acid recipes were prepared at different dissolving power. Retarded acid recipe #3 was equivalent to 15 wt% HCl while retarded acid recipes #1 and #2 were equivalent to >20 wt% HCl. The calcite disc dissolution rate with retarded acids #1 and #2 was significantly lower than 26 wt% HCl and comparable to 15 wt% HCl at 75°F. The solubility of calcite discs in the retarded acid recipe #3 showed acid retardation higher than retarded acid recipes #1 and #2. The corrosion rate of retarded acid recipes #1 and #2 were 0.003-0.015 lb/ft2 at 250°F and 6 hrs, lower than both examined 26-28 wt% HCl and emulsified acids. The pitting indices of retarded acid recipes #1, #2, and #3 were 4, 2, and 1 respectively at 300°F. The pore volumes to breakthrough (PVBT) of retarded acid recipes #1 and #2 were slightly higher than retarded acid recipes #3 at 200°F. The PVBT values for 15 wt% and 28 wt% emulsified acid was comparable to retarded acid recipes #1, #2, and #3, confirming their retardation was effective.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3