Formation Damage Due to CO2 Sequestration in Deep Saline Carbonate Aquifers

Author:

Mohamed I. M.1,Nasr-El-Din H. A.1

Affiliation:

1. Texas A&M University

Abstract

Abstract CO2 injection in carbonate formations causes a reduction in the well injectivity, due to precipitation of the reaction products between CO2/ rock/brine. The precipitated material includes sulfate and carbonate scales. The homogeneity of the carbonate rock, in terms of mineralogy and rock structure, is an important factor that affects the behavior of permeability changes during CO2 injection. Limestone rocks represent the homogenous rock in this study, and include: Pink Desert limestone and Austin chalk, which are mainly calcite. Silurian dolomite (composed of 98% carbonate minerals, and 2% silicate minerals) and Indiana limestone rock represent the heterogeneous rock, which have some vugs in their structure. Coreflood experiments were conducted to compare the behavior of the permeability loss between these rocks. CO2 was injected with the water alternating gas (WAG) technique. Different brines were examined including seawater and no sulfate seawater. The experiments were run at a pressure of 1300 psi, a temperature of 200°F, and an injection rate of 5 cm3/min. A compositional simulator tool (CMG-GEM) was used to confirm the experimental results obtained in this study. The results showed that for homogenous rocks, the presence of sodium sulfate in the injected seawater is the major factor that causes formation damage, due to calcium sulfate precipitation in CO2 environments. For dolomite rocks, higher damage was noted, due to the reactions of CO2 with the silicate minerals. For both homogenous and heterogeneous rocks, the source of damage for high permeability cores is the precipitation of reaction products, while for low permeability cores, water blockage increases the severity of formation damage. The simulation study showed that the power-law exponent, and Carman-Kozeny exponent between 5 and 6, can be used for homogenous carbonate rock to estimate the change in permeability based on the change in porosity, for heterogeneous rock a larger exponent was needed.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3