The Impact of Kerogen Tortuosity on Shale Permeability

Author:

Aljaberi Jaber1,Alafnan Saad2,Glatz Guenther1,Sultan Abdullah S.1,Afagwu Clement1

Affiliation:

1. King Fahd University of Petroleum & Minerals

2. King Fahd University of Petroleum & Minerals (Corresponding author)

Abstract

Summary Shale-matrix-associated transport phenomena exhibit multiple mechanisms including advective-, diffusive-, and adsorptive-driven transport modes, depending on the pore type. Diffusive processes are governed by the shale organic constituents known as kerogens. Kerogens, composed of fine-scale organic microstructures, vary with respect to their petrophysical properties, depending on their origin and maturity level. The extent to which kerogens contribute to the overall transport is governed by their ability to diffuse hydrocarbons contained within. The diffusion coefficient is a crucial parameter used to quantify diffusivity based on the interactions between the host material and the diffusing molecules. Kerogen as a hosting medium allows for diffusion of natural gas at various rates based on several factors. One of these factors, kerogen porosity, is conjectured to significantly influence diffusive transport phenomena. In this paper, taking advantage of the predictive power of molecular dynamics (MD) simulation, we investigate the impact of kerogen porosity on the diffusivity coefficient of natural gas. Starting from a single type II kerogen macromolecule, several kerogen structures for a realistic range of porosity values were created and, subsequently, used for diffusivity calculations of methane molecules. Simulation results suggest a direct link between diffusion and kerogen porosity, allowing for delineation of the diffusion tortuosity factor. Furthermore, the microscale tortuosity–diffusivity relationship in kerogens was investigated at the reservoir scale by means of a shale permeability model. The results substantiate the critical impact of the diffusion process on the shale permeability.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3