An Adaptive Sequential Fully Implicit Domain-Decomposition Solver

Author:

Klemetsdal Ø. S.1,Moncorgé A.2,Nilsen H. M.1,Møyner O.1,Lie K-. A.1

Affiliation:

1. SINTEF Digital

2. Total E&P (Corresponding author; email: arthur.moncorge@total.com)

Abstract

Summary Modern reservoir simulation must handle complex compositional fluid behavior, orders-of-magnitude variations in rock properties, and large velocity contrasts. We investigate how one can use nonlinear domain-decomposition preconditioning to combine sequential and fully implicit (FI) solution strategies to devise robust and highly efficient nonlinear solvers. A full simulation model can be split into smaller subdomains that each can be solved independently, treating variables in all other subdomains as fixed. In subdomains with weaker coupling between flow and transport, we use a sequential fully implicit (SFI) solution strategy, whereas regions with stronger coupling are solved with an FI method. Convergence to the FI solution is ensured by a global update that efficiently resolves long-range interactions across subdomains. The result is a solution strategy that combines the efficiency of SFI and its ability to use specialized solvers for flow and transport with the robustness and correctness of FI. We demonstrate the efficacy of the proposed method through a range of test cases, including both contrived setups to test nonlinear solver performance and realistic field models with complex geology and fluid physics. For each case, we compare the results with those obtained using standard FI and SFI solvers. This paper is published as part of the 2021 Reservoir Simulation Conference Special Issue.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3