Constructing Deep Closed-Loop Geothermal Wells for Globally Scalable Energy Production by Leveraging Oil and Gas ERD and HPHT Well Construction Expertise

Author:

van Oort Eric1,Chen Dongmei1,Ashok Pradeepkumar1,Fallah Amirhossein1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Deep closed-loop geothermal systems (DCLGS) are introduced as an alternative to traditional enhanced geothermal systems (EGS) for green energy production that is globally scalable and dispatchable. Recent modeling work shows that DCLGS can generate an amount of power that is similar to that of EGS, while overcoming many of the downsides of EGS (such as induced seismicity, emissions to air, mineral scaling etc.). DCLGS wells can be constructed by leveraging oil and gas extended reach drilling (ERD) and high-pressure high-temperature (HPHT) drilling expertise in particular. The objectives of this paper are two-fold. First, we demonstrate that DCLGS wells can generate significant geothermal power, i.e. on the order of 25-30 MWt per borehole initially. To this extent, we have developed a coupled hydraulic-thermal model, validated using oil and gas well cases, that can simulate various DCLGS well configurations. Secondly, we highlight the technology gaps and needs that still exist for economically drilling DCLGS wells, showing that it is possible to extend oil and gas technology, expertise and experience in ERD and HPHT drilling to construct complex DCLGS wells. Our coupled hydraulic-thermal sensitivity analyses show that there are key well drilling and design parameters that will ultimately affect DCLGS operating efficiency, including strategic deployment of managed pressure drilling / operation (MPD/MPO) technology, the use of vacuum-insulated tubing (VIT), and the selection of the completion in the high-temperature rock formations. Results show that optimum design and execution can boost initial geothermal power generation to 25 MWt and beyond. In addition, historical ERD and HPHT well experience is reviewed to establish the current state-of-the-art in complex well construction and highlight what specific technology developments require attention and investment to make DCLGS a reality in the near-future (with a time horizon of ~10 years). A main conclusion is that DCLGS is a realistic and viable alternative to EGS, with effective mitigation of many of the (potentially show-stopping) downsides of EGS. Oil and gas companies are currently highly interested in green, sustainable energy to meet their environmental goals. DCLGS well construction allows them to actively develop a sustainable energy field in which they already have extensive domain expertise. DCLGS offers oil and gas companies a new direction for profitable business development while meeting environmental goals, and at the same time enables workforce retention, retraining and re-deployment using the highly transferable skills of oil and gas workers.

Publisher

SPE

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3