A Chemo-poroelastic Solution for Stress and Pore Pressure Distribution around a Wellbore in Transversely Isotropic Shale

Author:

Ghassemi A.1,Diek A.2

Affiliation:

1. University of North Dakota

2. University of Oklahoma

Abstract

Abstract It is generally accepted that shale deterioration and borehole instability are significantly influenced by excessive pore pressure, ion exchange between drilling fluids and shale, and the anisotropy of the in-situ stress state as well as the formation. This paper describes a model for estimating the influence of elastic and chemo-mechanical anisotropy on the distribution of stress and pore pressure around a well in transversely isotropic shale. The model is based on a practical theory that couples ion diffusion, chemical osmosis, and hydraulic flow to stresses and pore pressure. The field equations of the model are derived within the framework of a continuum chemoporoelastic theory that linearly relates total stresses and variation of fluid content to the strains, pore pressure, and solute mass fraction through anisotropic material coefficients. The field equations are solved analytically for the problem of a wellbore in transversely isotropic shale to yield the solute mass fraction, pore pressure, and the stress distributions around the borehole. The solution has been applied to a typical field situation and the results indicate that the osmotic pressure tends to stabilize the borehole. However, osmotic pressure dissipates with time due to ion diffusion. Furthermore, it is found that the anisotropy in chemo-mechanical material coefficients strongly affects the effective stresses around the borehole and enhances the potential for borehole failure. Introduction When drilling for oil and gas, a significant portion of the drilled sections contain shales that are the major source (90%) of wellbore instability problems. These problems often depart from the classical mechanical failure mechanism exhibiting time-dependent mud support requirements and loss of strength associated with physico-chemical processes. Prior to drilling, a shale formation may be considered in a state of mechanical, hydraulic, chemical, and thermal equilibrium. Drilling disturbs this virgin state and imposes hydraulic, chemical potential, and thermal gradients. The ensuing influx of mud filtrate into the formation weakens the rock and leads to excessive stress, pore pressure, and ionic exchange between drilling fluids and shale. As a result, rock deforms and may faile leading to borehole collapse.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3