A Fractal Model for the Stress-Dependent Permeability and Relative Permeability in Tight Sandstones

Author:

Lei Gang1,Dong Pingchuan1,Wu Zishen1,Mo Shaoyuan1,Gai Shaohua1,Zhao Chao1,Liu Z.K.1

Affiliation:

1. China University of Petroleum

Abstract

Stress-dependent permeability and relative permeability in porous media are important in petroleum-engineering fields. It has been shown that stress-dependent permeability and relative permeability play important roles in determination of flow characteristics for tight-sandstone porous media. In this work, novel predictive models for stress-dependent permeability and relative permeability in microporous media with lower permeability are developed on the basis of fractal theory. The predictions of irreducible water saturation, normalized porosity, normalized permeability, and the ratio Krw/Krg by the proposed model show a variation trend similar to that of the available experimental data. On the basis of the proposed normalized porosity and normalized permeability model, it is found that the normalized porosity and permeability decrease with effective stress, thus predicted results are in good agreement with former experiments. The proposed normalized porosity and normalized permeability are expressed as a function of the effective stress, rock elastic modulus, microstructural parameters, and initial irreducible water saturation. The theoretical study of relative permeability under stress demonstrates that wetting phase relative permeability is related to the effective stress, microstructural parameters, and initial irreducible water saturation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3