Optimization of Oil Production in an Oil Rim Reservoir Using Numerical Simulation with Focus on IOR/EOR Application

Author:

Jaoua Maroua1,Rafiee Mohsen2

Affiliation:

1. University of Leoben

2. Wintershall Dea GmbH

Abstract

Abstract Development of oil rim reservoirs is challenging and could lead to low oil recovery, if multiple determining factors are not well understood, that influences successful field development concept. It requires detailed analysis and development of specific procedures to optimize the oil production from a thin oil rim underlaying gas cap. Few IOR/EOR applications for oil rim development have been reported in the literature so far. This study presents a concept for the optimization of oil production from an oil rim reservoir by numerical simulation. As a starting point, a representative sector of the field was selected for the initial analysis. It was decided to perform IOR/EOR methods including water/gas flooding/injection and surfactant flooding using inverted five-spot horizontal well pattern, for the application in the selected sector. Upon execution of the detailed sensitivity analysis, the pattern was optimized by its characteristic geometric variables including the length of the vertical/horizontal section of the well, the location of the wells, lateral well distances and the orientation of the pattern. The optimization was performed by setting an objective function to improve recovery factor and reduce water/gas cut by using the differential evolution algorithm. The latter was run until converging, and the optimal solution was used to perform further IOR/EOR studies. Finally, after selection of a base-case scenario and best well pattern, IOR/EOR options were evaluated, and the comparative results were reported. The generated results show that the application of 5-spot horizontal well pattern in the oil rim reservoir could increase the oil recovery by water flooding, but with low sweep efficiency. The losses of injected water into the underlaying aquifer and up laying gas gap are large. Immiscible gas injection into the gas cap can support the pressure but massively increases the gas cut. In addition, displacement efficiency by gas flooding is poor. Simulation results of the surfactant flooding case shows better displacement efficiency compared to water flooding. Also, the possibility of reducing residual oil saturation could increase the ultimate oil recovery but at very late time.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3