Conformance Improvement in Oil Reservoirs by Use of Microemulsions

Author:

Torrealba V. A.1,Hoteit H..1

Affiliation:

1. King Abdullah University of Science and Technology

Abstract

Summary The performance of many improved and enhanced-oil-recovery (EOR) techniques in conventional reservoirs is frequently degraded by conformance problems. The presence of high-permeability streaks or thief layers between injection and production wells typically results in premature water breakthrough, high water cut, and deficient volumetric sweep. As a result, significant oil volumes in the reservoir might not be contacted by the injection fluid. Several conformance-improvement techniques (e.g., foams, gels, resins) have been developed and practiced in improved-oil-recovery operations. Each technique has its own advantages and limitations related to deployment practicality, effectiveness, and durability. In this paper, we introduce a novel conformance-improvement method (CIM) that we consider practical, effective, and durable. The CIM process consists of cyclical injections of pulse slugs of surfactant alternating with brine. The slug compositions are selected on the basis of the rheological behavior of the microemulsion phase. The chemical slugs are configured such that the viscosity of the injected fluids is kept low to preserve injectivity and to ensure the invasion of the conformance agent toward the thief zones. The trailing brine slugs are designed to produce a high-viscosity microemulsion as they mix with the leading surfactant slugs in the reservoir. The proposed process leads to a reduction in the effective mobility of the fluids in the thief layers. As a result, the chase waterflood (WF) would divert into previously uncontacted layers to improve the sweep efficiency. The potential of the proposed CIM in improving oil recovery is demonstrated by various simulations of reservoir cases under waterflooding. We performed various sensitivities to investigate the effectiveness of the proposed process that include well spacing, permeability contrast, size of the thief layers, heterogeneity, and the size of the chemical pulse slugs. Simulations showed that this process is effective in addressing reservoir-conformance issues, and therefore it has the potential to improve the sweep efficiency and the recovery factor (RF) in reservoirs with distinct thief layers. The treatment surfactant volumes are relatively small, which enables this process to be cost-effective.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3