Production-Pressure-Drawdown Management for Fractured Horizontal Wells in Shale-Gas Formations

Author:

Mirani Ankit1,Marongiu-Porcu Matteo2,Wang HanYi3,Enkababian Philippe2

Affiliation:

1. University of Houston

2. Schlumberger

3. University of Texas at Austin

Abstract

Summary The development of unconventional shale-gas formations in North America with horizontal multifractured wells is mature enough to identify production malpractices and abnormal productivity declines generally observed within 18–24 months of initial production. The primary objective of this study is to address all known causes of these productivity declines and to develop a fully coupled geomechanical/flow simulation model to simulate these production conditions. This model mimics the effect of depletion-induced in-situ stress variations on short-term and long-term productivity by taking into account several phenomena, such as stress-dependent matrix and natural-fracture permeability as well as reduction in hydraulic-fracture conductivity caused by proppant crushing, deformation, embedment, and fracture-face creep. Matrix-permeability evolutions, considering the conflicting effects of non-Darcy flow and compaction, have also been accounted for in this model. Numerical solutions for simplified hydraulic-fracture planar geometries are then obtained by use of a finite-element-method scheme. A synthetic case was defined to investigate the effects of each individual phenomenon on short-term and long-term production. Results show that the combined effects of permeability alterations in matrix and natural fractures as well as conductivity losses in hydraulic fractures may result in substantial cumulative-gas-production loss. The model also reproduces familiar field-observed trends, with lower long-term production corresponding to higher drawdowns. This behavior is attributed to the stress-dependent evolution of reservoir permeability and hydraulic-fracture conductivity. The results show that ignoring the effects of any of the previous phenomena results in overestimation of ultimate recovery. Furthermore, it is shown that proper management of pressure drawdown and the penalty for lower initial production rates in unconventional shale-gas reservoirs can yield substantially higher ultimate recovery. The model is fully versatile and allows modeling and characterization of all widely differing (on a petrophysical level) shale-gas formations as well as proppant materials used for the stimulation treatments. This integrated model can be used for optimization of key parameters during the hydraulic-fracture design, for fine tuning production history matching, and especially as a predictive tool for pressure-drawdown management.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3