Integrating Peng Robinson EOS with Association Term for Better Minimum Miscibility Pressure Estimation

Author:

Al-Kadem M. S.1,Al-Mashhad A. S.1,Al-Dabbous M. S.1,Sultan A. S.2

Affiliation:

1. Saudi Aramco

2. KFUPM

Abstract

Abstract Minimum miscibility pressure (MMP) is a very critical parameter to design any enhanced oil recovery affiliated with carbon dioxide (CO2) gas injection methodology. MMP can be computationally estimated using the Peng Robinson Cubic Equation of State (PR-EOS). In this paper, an association term was incorporated into the equation to account for covalent bonds between oxygen and carbon atoms in a CO2 compound for accurate MMP estimation. During the CO2 gas injection process, interactions between the oil multicomponent system and injected CO2 are in place where strong electrostatic force is exhibited between oxygen and carbon atoms. This attractive force cannot be neglected. Nevertheless, a Cubic Equation of State, such as Peng Robinson, accounts only for physical forces such as repulsion and attraction forces only. For this, an association term is introduced to account for electrostatic forces. Cubic plus Association EOS (CPA-EOS) was assimilated with Ahmed Tarek's methodology to estimate MMP rigorously in consideration of oil system and CO2 compositions. MMP was estimated using both PR-EOS and CPA-EOS, and compared against the experimental value with a very minimal absolute error. Therefore, the results showed a close agreement between calculated and experimental MMP. The uncertainty was immensely reduced when utilizing CPA-EOS proposed by Ahmed Tarek for MMP estimation. Three correlations were applied to estimate MMP with a slightly high deviation from the experimental MMP values. This high error is due to the ignorance of the intermolecular forces exhibited between molecules among these correlations. It is worth mentioning that this proposed method is highly appreciating the intermolecular bonding exhibited in CO2 and hydrocarbon multicomponent mixture, which results in a very reliable and accurate estimation of MMP. In other words, integrating conventional EOS with the association term provides accurate estimation of MMP to ensure effective modeling of an enhanced oil recovery (EOR) design with CO2 injection.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase Behavior and Miscibility of CO2–Hydrocarbon Mixtures in Shale Nanopores;Industrial & Engineering Chemistry Research;2021-03-31

2. Impact of in-situ gas liberation for enhanced oil recovery and CO2 storage in liquid-rich shale reservoirs;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2020-09-08

3. Influence of Formation Temperature on Minimum Miscibility Pressure of CO2-Crude Oil System;Proceedings of the International Petroleum and Petrochemical Technology Conference 2019;2019-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3