Relative Permeability at Near-Critical Conditions

Author:

Blom S. M. P.1,Hagoort Jacques1,Soetekouw D. P. N.1

Affiliation:

1. Delft U. of Technology

Abstract

Summary We have measured a series of two-phase drainage relative permeability curves at near-critical conditions by means of the displacement method. As a fluid system we have used the model system methanol/n-hexane that exhibits a critical point at ambient conditions. In the measurements we have varied the interfacial tension and the flow rate. Our results show a clear trend from immiscible relative permeability functions to miscible relative permeability lines with decreasing interfacial tension and increasing superficial velocity. The relative permeability measurements show that the controlling parameter is the ratio of viscous to capillary forces on a pore scale, denoted by the capillary number Nc=k‖∇Φ‖/ϕσ. To demonstrate the significance of using the proper relative permeability functions, we have calculated the well impairment due to liquid drop-out in a model gas condensate reservoir, for four different rock types showing four different relations between relative permeability and the capillary number. The calculations show that near-miscible relative permeability functions come into play in the vicinity of the well bore. This is contrary to what happens if the relative permeability would be a function of interfacial tension alone. In addition, the results show that well impairment by condensate drop-out may be significantly overestimated if the dependence of relative permeability on the capillary number is ignored.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3