Corrosion Prevention for Offshore Platforms

Author:

Schremp F.W.1

Affiliation:

1. Chevron Oil Field Research

Abstract

Summary Offshore oil and gas platforms are subjected to hostile, corrosive, marine environments and require continuous preventive maintenance to ensure prolonged and safe operation. Corrosion is identified as it occurs: above water, in the splash zone, and subsea. Coating systems, surface preparation, application, and maintenance are discussed for abovewater corrosion prevention. The advantages and limitations of added metal for corrosion allowance, corrosion-resistant cladding, and coatings are discussed for splash-zone corrosion prevention. Major emphasis is on the use of cathodic protection (CP) to prevent subsea corrosion. Included in the discussion are the advantages and limitations of sacrificial-anode and impressed-current CP systems for use with steel and reinforced concrete structures. Subsea monitoring and the effects of platform CP on well casings are also discussed. Introduction Offshore wells account for about 23% of the world's oil production. Although the number of offshore platforms is not known, there are more than 17,000 offshore wells worldwide. Platforms range from single-well structures in 10 ft [3 m] of water to complex structures in water depths to 1,000 ft [300 m], and with sometimes more than 100 wells per platform. Deepwater platforms cost hundreds of millions of dollars and are expected to be productive for 20 to 40 years. Corrosion is a major problem with offshore platforms because of the harsh marine environment, and there is constant need for preventive maintenance to ensure prolonged and safe operation. Each of the three corrosive zones on an offshore platform has its unique corrosion problems:the atmospheric zone (above water),the splash zone (tidal), andthe subsea zone (underwater and sea bottom). In addition, the well casings, which are mechanically and electrically connected to the platform, also have corrosion problems. Atmospheric Corrosion Corrosion is severe in marine atmospheres because of the combined effects of the sun, temperature, and the oxygen, moisture, and salt contained in the air. This kind of corrosion generally is controlled by use of corrosion resistant metals and nonmetallics where applicable, and protective coatings elsewhere. Protective coatings are widely used because of the amount of carbon steel used in platform construction. A coating system usually consists of a primer, an intermediate or tiecoat, and a topcoat. An effective coating requires thorough surface preparation and skilled application in addition to the use of the best materials. Surface Preparation The objective is to remove mill scale, to clean the surface of the steel, and to provide a suitable anchor pattern to ensure optimal bonding of the coating system. This usually is accomplished by surface sandblasting. Guidelines for surface preparation are outlined in the Natl. Assn. of Corrosion Engineers (NACE) Standard, RP-01–76. Coating Systems Primers are used to protect the cleaned metal surface. and are classed as either wash, zinc-rich, or inhibitive primers. Wash Primers usually consist of a vinyl resin, solvent solution pigmented with zinc or strontium chromate. Prior to application, the solution is mixed with phosphoric acid and alcohol. After application, the mixture produces a passive layer of iron phosphate on the metal surface. This film is easily damaged and should be topcoated quickly to prevent rusting. Zinc-Rich Primers may be either organic or inorganic coatings with a high loading of zinc dust. These primers are excellent during construction because of their abrasion and impact resistance. However, they are sensitive to acids and alkalis and should be protected with a chemically resistant topcoat when used on offshore platforms. Inhibitive Primers may be thermoplastic or thermosetting resins. Thermoplastic resins cure by solvent loss and thermosetting resins by the addition of a catalyst or curing agent. Both systems include pigments, such as red lead, strontium chromate, basic lead silicon chromate, etc. These pigments tend to retard corrosion in the presence of moisture either by ionization or by creating an alkaline environment at the metal surface. Both require topcoats to perform effectively. Intermediate and topcoats function as protective barriers for the primers by preventing the access of water, oxygen, and active chemicals. Both are usually of the same generic type and are made from thermoplastic or thermosetting resins. Thermoplastic Coatings are solvent-deposited and include the vinyl acrylics, vinyls, and the chlorinated rubbers. The coatings dry by solvent evaporation, thereby permitting application at relative humidities up to 90% and temperatures as low as 32 deg. F [0 deg. C]. JPT P. 605^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3