Mechanistic Simulation of Polymer Injectivity in Field Tests

Author:

Lotfollahi Mohammad1,Farajzadeh Rouhi2,Delshad Mojdeh1,Al-Abri Al-Khalil3,Wassing Bart M.3,Al-Mjeni Rifaat3,Awan Kamran3,Bedrikovetsky Pavel4

Affiliation:

1. University of Texas at Austin

2. Shell Global Solutions International and Delft University of Technology

3. Petroleum Development Oman

4. University of Adelaide

Abstract

Summary Polymer flooding is one of the most widely used chemical enhanced-oil-recovery (EOR) methods because of its simplicity and low cost. To achieve high oil recoveries, large quantities of polymer solution are often injected through a small wellbore. Sometimes, the economic success of the project is only feasible when injection rate is high for high-viscosity solution. However, injection of viscous polymer solutions has been a concern for the field application of polymer flooding. The pressure increase in polymer injectors can be attributed to (1) formation of an oil bank, (2) polymer rheology (shear-thickening behavior near wellbore), and (3) plugging of the reservoir pores by insoluble polymer molecules or suspended particles in the water. In this paper, a new model to history match field injection-rate/pressure data is proposed. The pertinent equations for deep-bed filtration and external-cake buildup in radial coordinates were coupled to the viscoelastic polymer rheology to capture important mechanisms. Radial coordinates were selected to minimize the velocity/shear-rate errors caused by gridblock size in the Cartesian coordinates. The filtration theory was used and the field data history matched successfully. Systematic simulations were performed, and the impact of adsorption (retention), shear thickening, deep-bed filtration, and external-cake formation was investigated to explain the well-injectivity behavior of polymer. The simulation results indicate that the gradual increase in bottomhole pressure (BHP) during early times is attributed to the shear-thickening rheology at high velocities experienced by viscoelastic hydrolyzed polyacrylamide (HPAM) polymers around the wellbore and the permeability reduction caused by polymer adsorption and internal filtration of undissolved polymer. However, the linear impedance during external-cake growth is responsible for the sharper increase in injection pressure at the later times. One can use the proposed model to calculate the injectivity of the polymer-injection wells, understand the contribution of different phenomena to the pressure rise in the wells, locate the plugging or damage that may be caused by polymer, and accordingly design the chemical stimulation if necessary.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3