Water Coning, Water, and CO2 Injection in Heavy-Oil Fractured Reservoirs

Author:

Moortgat Joachim1,Firoozabadi Abbas2

Affiliation:

1. The Ohio State University

2. Reservoir Engineering Research Institute

Abstract

Summary In this work, we investigate challenges related to the recovery of heavy viscous oil from reservoirs with a dense network of fractures and vugs but with a tight matrix. Gravitational drainage of oil from the tight matrix through water injection is ineffective because of the high oil viscosity and density. To further complicate matters, we consider a strong underlying aquifer, and there is considerable risk of water coning around producing wellbores caused by the low water viscosity. To model potential recovery strategies, we carry out simulations with our higher-order finite-element (FE) compositional multiphase-flow reservoir simulator. Discrete fractures are represented through the crossflow equilibrium (CFE) approach. Phase behavior and phase-split computations are modeled with the cubic-plus-association equation of state (EOS). Fickian diffusion, facilitating species exchange between gas in fractures and matrix oil, is modeled through chemical potential gradients. First, we validate our simulator by modeling a set of laboratory experiments in which water is injected in a fractured stack saturated with oil. The experiments investigate the effects of capillary pressure and injection rates on oil recovery, and show that, at low injection rates, capillary imbibition of water from the fractures into the matrix blocks is extremely efficient. Simulations with our 3D discrete-fracture model show excellent agreement with the experimental results without parameter adjustments. Next, we consider the detrimental effect of water coning when oil is produced without injection by carrying out a parameter study investigating the impacts of different (1) water–oil mobility ratios, (2) matrix and fracture wettabilities, (3) matrix permeabilities, (4) domain sizes, (5) production rates, (6) well types and placement, and (7) a local viscosity-reduction treatment around producing wellbores. We find that the only approach to partially mitigate coning is to produce at low rates from perforated (and potentially multilateral) horizontal wells. As an alternative production strategy, we then model carbon dioxide (CO2) injection in two and three dimensions, and compare to results from a commercial dual-porosity simulator. CO2 has a high solubility in this oil, and dissolution leads to volume swelling and a large reduction in oil viscosity. In combination with the much higher density difference between the phases, the latter improves gravitational drainage. We find that a significant amount of matrix oil can be produced in addition to oil from fractures and vugs, and with a lower risk of water coning.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3