A Production-Based Method for Direct Estimation of Gas in Place and Reserves

Author:

Blasingame Thomas Alwin1,Rushing Jay Alan2

Affiliation:

1. Texas A&M University

2. Anadarko Petroleum Corp.

Abstract

Abstract This paper presents a systematic method for the direct estima-tion of gas-in-place and reserves using only gas production data. The fundamental concept used in this work is "quadra-tic" rate-cumulative relation, which is given as: (1) Where we define the decline constant, Di, for this case as: (2) The basis of our method is the development and application of several rate-time/cumulative production-time plotting func-tions which are derived using Eq. 1 (see Appendix A). Eq. 1 is itself derived from a rigorous coupling of the gas material balance equation for a volumetric dry gas reservoir and a modified version of the stabilized gas flow equation for a gas well producing at a constant bottomhole pressure. The proposed procedure is designed to simultaneously match the independent plotting functions (developed from Eq. 1), where we note that each function exhibits unique characteristics (e.g., a straight-line trend) which can be used as an extrapolation mechanism for estimating gas reserves. In this work we utilize a "spreadsheet" approach in which the data and plotting functions are linked by "global" model parameters, thus ensuring consistent evaluations. We verify our methodology using a simulated case and we then illustrate the application of this method using a field case. Although theoretical considerations limit the rigorous use of the pro-posed methodology to reservoir pressures less than 6,000 psia, we have successfully applied of our method in practice for reservoir pressures as high as 10,000 psia. Introduction The classic works of Arps[1] and Fetkovich2 illustrate the analysis of well performance data using empirically-derived exponential, harmonic, and hyperbolic functions. Although Arps' work is completely empirical (see derivation in Appen-dix B), this work does provide us with a family of rate-time and cumulative production-time relations that are valid (at least in a practical sense) for a variety of producing conditions. In fact, the Arps' equations continue to enjoy widespread use in the upstream petroleum industry, particularly for production predictions and for estimating reserves from production decline behavior. However, the motivation for this work (i.e., our new reserves estimation methods for gas wells) is our observation that the Arps' relations can yield inconsistent results (unreliable matches, poor extrapolations, etc.). We do not conclude the hyperbolic relations have no utility, but rather, we find that the "quadratic cumulative" relations derived in this work tend to be more consistent, and provide better results for a wide variety of gas reservoir conditions.

Publisher

SPE

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3