Affiliation:
1. Schlumberger
2. Abu Dhabi Company for Onshore Operations
Abstract
Abstract
This paper describes the implementation of the solvent model in streamline simulation and its application to WAG injection optimization for a producing field. The solvent model was implemented as an extension to the 3-component black oil model, with solvent as an additional component, to model miscible displacement process. The relative permeabilities and fluid properties of the oil and gas phases are modified based on the fraction of the solvent component, the reservoir pressure and the Todd-Longstaff mixing-parameter (i.e. an empirical treatment of the effects of physical dispersion between miscible components).
The solvent model was applied to a Middle Eastern oilfield, which is currently under development using a miscible WAG process. PVT analysis has been done to prepare the properties for the reservoir gas and the injection solvent. Streamline simulation models with and without solvent model were run to compare the results with a reference finite difference compositional reservoir simulator and the effect of miscibility has been validated.
Results of streamline simulation models with and without solvent model were compared against a reference finite difference reservoir simulator. The comparison shows the streamline simulation model with solvent model has much better agreement with the reference finite difference compositional reservoir simulator which shows that the miscible displacement process is properly simulated in the streamline simulation model with solvent model.
The solvent model presented in this paper advances streamline simulation technology, combining the intuitive and unique properties of streamlines and the capability of simulating miscible recovery mechanism. It allows simulating both immiscible and miscible displacement within the same simulation. The solvent model considers the effects of miscibility by considering relative permeabilities and fluid properties adjustments based on pressure and solvent concentration. The technology will help effective simulation of miscible recovery process, assist optimum solvent allocation and improve unified sweep.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献