Miscible WAG Efficiency Assessment on a Large Mature Carbonate Field

Author:

Bourgeois Marcel J.1,Berrahmoun Hocine2,Al Attar Maryam Mohamed2,Boulenouar Djilali2,Hammadi Djelloul2,Romero Carolina2,Shi Wen2,Torrez Maria Fernanda1

Affiliation:

1. TotalEnergies

2. ADNOC Onshore

Abstract

Abstract This paper is based on the analysis of miscible WAG for an onshore Middle-East field, with strongly undersaturated light oil. Water Alternate Gas operations have been ongoing for around 5 years, which is relatively recent compared to more than 40 years of production history. Goal of this work was to assess the efficiency of this miscible hydrocarbon WAG and to optimize it on the different compartments, with respect to miscibility, voidage replacement, and recycling. As this is a large mature field, with WAG operations dispatched on around 50 injectors and 9 fault blocks (compartments), the method of analysis had to be robust with respect to the different injection strategies followed in the past. It was essentially based on injection and production data, but also used pressure data when available. We computed the following dimensionless variables: oil recovery factor, BSW, voidage replacement ratio (VRR), and also WAG ratio and gas recycling ratio (GRR). Their evolution versus time was analyzed and compared between fault blocks. Using dimensionless variables allowed to compare fault blocks with different initial volumes in place, and to illustrate trends versus time. It was also found beneficial to lump some compartments, when communication was substantiated by pressure data. On the production side, we used the conventional BSW and GOR variables to quantify the water and gas recycling ratio. On the injection side, we observed that in some compartments, the historical WAG ratio was too low in the oil zone, which could be quantified by excluding the peripheral water injection volumes. The analysis allowed also to estimate the gas utilization factor and efficiency, which confirmed the overall high efficiency of miscible gas injection in 3-phase mode. It was also found that the injected fluid efficiency correlated with geology: gas injection tends to be more efficient in zones with high permeabilities at the bottom (coarsening downwards), while water injection is better adapted to zones with high permeabilities at the top (coarsening upwards). Estimating these water and gas efficiencies also allowed to optimize the injection strategy on a field level, by comparing the water efficiency with other units of the field only under waterflood.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3